参考文献

Bellet, Aurélien. 2013. “Tutorial on Metric Learning.” http://researchers.lille.inria.fr/abellet/talks/metric_learning_tutorial_CIL.pdf.
Bellet, Aurélien, Amaury Habrard, and Marc Sebban. 2014. “A Survey on Metric Learning for Feature Vectors and Structured Data.” arXiv:1306.6709 [Cs, Stat], February. http://arxiv.org/abs/1306.6709.
Healy, Kieran. 2018. Data Visualization: A Practical Introduction. Princeton, NJ: Princeton University Press. https://kieranhealy.org/publications/dataviz/.
Hoffer, Elad, and Nir Ailon. 2015. “Deep Metric Learning Using Triplet Network.” In International Workshop on Similarity-Based Pattern Recognition, edited by Aasa Feragen, Marcello Pelillo, and Marco Loog, 9370:84–92. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-24261-3_7.
Liu, Ming, Vasile Rus, Qiang Liao, and Li Liu. 2017. “Encoding and Ranking Similar Chinese Characters.” Journal of Information Science and Engineering 33: 1195–1211. https://www.semanticscholar.org/paper/Encoding-and-Ranking-Similar-Chinese-Characters-Liu-Rus/53432f26750d8814fd5edfa770c1e354a15fbd7e.
Sanakoyeu, Artsiom, Miguel A. Bautista, and Björn Ommer. 2018. “Deep Unsupervised Learning of Visual Similarities.” Pattern Recognition 78 (June): 331–43. https://doi.org/10.1016/j.patcog.2018.01.036.
Schwabish, Jonathan A. 2014. “An Economist’s Guide to Visualizing Data.” Journal of Economic Perspectives 28 (1): 209–34. https://doi.org/10.1257/jep.28.1.209.
Tufte, Edward R. 2001. The Visual Display of Quantitative Information. 2nd ed. Cheshire, Conn: Graphics Press.
Turpault, Nicolas, Romain Serizel, and Emmanuel Vincent. 2019. “Semi-Supervised Triplet Loss Based Learning of Ambient Audio Embeddings.” In ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 760–64. Brighton, United Kingdom: IEEE. https://doi.org/10.1109/ICASSP.2019.8683774.
Wang, Jiang, Yang Song, Thomas Leung, Chuck Rosenberg, Jingbin Wang, James Philbin, Bo Chen, and Ying Wu. 2014. “Learning Fine-Grained Image Similarity with Deep Ranking.” In 2014 IEEE Conference on Computer Vision and Pattern Recognition, 1386–93. Columbus, OH, USA: IEEE. https://doi.org/10.1109/CVPR.2014.180.
Zhang, Longtu, and Mamoru Komachi. 2019. “Chinese-Japanese Unsupervised Neural Machine Translation Using Sub-Character Level Information.” http://arxiv.org/abs/1903.00149.
北方謙三. 1996. 三国志. 角川春樹事務所.
吉川英治. 1939. 三國志. 大日本雄辯會講談社.
周大荒. 1919. 反三國演義. 台北: 捷幼出版社.
宮城谷昌光. 2004. 三国志. 文藝春秋.
森藤大地, and あんちべ. 2014. エンジニアのためのデータ可視化「実践」入門: D3.jsによるWebの可視化. https://gihyo.jp/book/2014/978-4-7741-6326-0.
渡辺義浩. 2011. 三国志: 演義から正史, そして史実へ. 東京: 中央公論新社.
糟谷勇児, and 山名早人. 2006. 二種類のSVMを用いたオンライン類似数式文字識別.” 電子情報通信学会技術研究報告. PRMU, パターン認識・メディア理解 105 (614): 55–60. https://www.yama.info.waseda.ac.jp/~kasuya-u/2006_2_svm.pdf.
藤俊久仁, and 渡部良一. 2019. データビジュアライゼーションの教科書. 東京: 秀和システム. https://www.shuwasystem.co.jp/book/9784798053486.html.
陳舜臣. 1974. 秘本三国志. 文藝春秋.
鴨下隆志, 奥村健一, 高橋和仁, 増村正男, and 矢野宏. 1998. 文字認識におけるマハラノビスの距離による判定の研究.” 品質工学会 6 (4): 39–45. https://doi.org/10.18890/qes.6.4_39.